Grundlagen des algorithmischen Handels: Konzepte und Beispiele Ein Algorithmus ist ein spezifischer Satz von klar definierten Anweisungen, die darauf abzielen, eine Aufgabe oder einen Prozess durchzuführen. Algorithmischer Handel (automatisierte Handel, Black-Box-Handel oder einfach Algo-Trading) ist der Prozess der Verwendung von Computern programmiert, um eine definierte Reihe von Anweisungen für die Platzierung eines Handels zu folgen, um Gewinne mit einer Geschwindigkeit und Häufigkeit zu generieren, die für eine unmöglich ist Menschlicher Händler Die definierten Regelsätze basieren auf Timing, Preis, Menge oder einem mathematischen Modell. Neben den Gewinnchancen für den Händler macht algo-trading die Märkte liquider und macht den Handel systematischer, indem er emotionale menschliche Auswirkungen auf die Handelsaktivitäten ausübt. Angenommen, ein Trader folgt diesen einfachen Handelskriterien: Kaufen Sie 50 Aktien einer Aktie, wenn der 50-Tage-Gleitender Durchschnitt über den 200-Tage-Gleitender Durchschnitt geht. Teilen Sie Aktien der Aktie, wenn der 50-Tage-Gleitender Durchschnitt unter den 200-Tage-Gleitender Durchschnitt geht Mit diesem Satz von zwei einfachen Anweisungen ist es einfach, ein Computerprogramm zu schreiben, das automatisch den Aktienkurs (und die gleitenden durchschnittlichen Indikatoren) überwacht und die Kauf - und Verkaufsaufträge platziert, wenn die definierten Bedingungen erfüllt sind. Der Trader muss nicht mehr auf Live-Preise und Grafiken aufpassen oder die Aufträge manuell einlegen. Das algorithmische Handelssystem tut es automatisch für ihn, indem es die Handelsmöglichkeit korrekt identifiziert. (Für mehr über bewegte Durchschnitte siehe: Einfache Umzugsdurchschnitte machen Trends heraus.) Algo-Trading bietet folgende Vorteile: Trades, die zu den bestmöglichen Preisen ausgeführt werden Sofortige und genaue Trading-Platzierung (damit hohe Chancen auf Ausführung auf Wunsch) Trades Zeitlich abgestimmt und sofort, um signifikante Preisänderungen zu vermeiden Reduzierte Transaktionskosten (siehe Implementierungsfehlbetrag Beispiel unten) Gleichzeitige automatisierte Überprüfung auf mehrere Marktbedingungen Reduziertes Risiko von manuellen Fehlern bei der Platzierung der Trades Backtest der Algorithmus, basierend auf verfügbaren historischen und Echtzeitdaten Reduziert Möglichkeit von Fehlern von menschlichen Händlern, die auf emotionalen und psychologischen Faktoren basieren Der größte Teil des heutigen Algo-Handels ist der Hochfrequenzhandel (HFT), der versucht, eine große Anzahl von Aufträgen mit sehr schnellen Geschwindigkeiten über mehrere Märkte und mehrere Entscheidungen zu tätigen Parameter, basierend auf vorprogrammierten Anweisungen. (Zu mehr im Hochfrequenzhandel siehe: Strategien und Geheimnisse von High Frequency Trading (HFT) - Firmen) Algo-Trading wird in vielen Formen der Handels - und Investitionstätigkeit eingesetzt, darunter: mittel - bis langfristige Anleger oder Buy-Side-Unternehmen (Pensionsfonds) , Investmentfonds, Versicherungsgesellschaften), die in großen Mengen in Aktien kaufen, aber nicht die Aktienpreise mit diskreten, großvolumigen Investitionen beeinflussen wollen. Kurzfristige Händler und Verkaufsseitenteilnehmer (Market Maker, Spekulanten und Arbitrageure) profitieren von der automatisierten Handelsabwicklung darüber hinaus, Algo-Trading hilft bei der Schaffung von ausreichenden Liquidität für Verkäufer auf dem Markt. Systematische Händler (Trendfolger, Paar Trader, Hedgefonds etc.) finden es viel effizienter, ihre Handelsregeln zu programmieren und das Programm automatisch zu handeln. Der algorithmische Handel bietet einen systematischeren Ansatz für den aktiven Handel als Methoden, die auf einer menschlichen Trader-Intuition oder einem Instinkt basieren. Algorithmische Handelsstrategien Jede Strategie für den algorithmischen Handel erfordert eine identifizierte Chance, die in Bezug auf verbesserte Erträge oder Kostensenkungen rentabel ist. Im Folgenden werden gemeinsame Handelsstrategien verwendet, die im Algo-Trading verwendet werden: Die gängigsten algorithmischen Trading-Strategien folgen den Trends bei gleitenden Durchschnitten. Kanalausbrüche. Preisniveaubewegungen und zugehörige technische Indikatoren. Dies sind die einfachsten und einfachsten Strategien, um durch algorithmischen Handel zu implementieren, da diese Strategien keine Vorhersagen oder Preisvorhersagen beinhalten. Trades werden auf der Grundlage des Auftretens von wünschenswerten Trends initiiert. Die einfach und unkompliziert sind, um durch Algorithmen zu implementieren, ohne in die Komplexität der prädiktiven Analyse zu gelangen. Das oben genannte Beispiel von 50 und 200 Tage gleitenden Durchschnitt ist ein beliebter Trend nach Strategie. (Weitere Informationen zu Trendhandelsstrategien finden Sie unter: Einfache Strategien zur Aktivierung von Trends.) Der Kauf eines dualen Börsenplatzes zu einem niedrigeren Preis in einem Markt und der gleichzeitige Veräußerung zu einem höheren Preis in einem anderen Markt bietet die Preisdifferenz als risikofreier Gewinn Oder Arbitrage. Der gleiche Vorgang kann für Aktien gegen Futures-Instrumente repliziert werden, da Preisdifferenzen von Zeit zu Zeit existieren. Die Implementierung eines Algorithmus zur Identifizierung solcher Preisunterschiede und die Platzierung der Aufträge ermöglicht rentable Möglichkeiten in effizienter Weise. Index-Fonds haben Perioden des Neugewinns definiert, um ihre Bestände mit ihren jeweiligen Benchmark-Indizes in Einklang zu bringen. Dies schafft profitable Chancen für algorithmische Händler, die auf erwarteten Trades profitieren, die 20-80 Basispunkte Gewinne in Abhängigkeit von der Anzahl der Aktien im Indexfonds, kurz vor dem Indexfonds-Rebalancing anbieten. Solche Trades werden über algorithmische Handelssysteme für rechtzeitige Ausführung und beste Preise initiiert. Viele bewährte mathematische Modelle, wie die delta-neutrale Trading-Strategie, die den Handel auf Kombination von Optionen und deren zugrunde liegenden Sicherheit ermöglichen. Wo Trades gesetzt werden, um positive und negative Deltas zu versetzen, so dass das Portfolio-Delta auf Null gehalten wird. Die mittlere Reversionsstrategie basiert auf der Idee, dass die hohen und niedrigen Preise eines Vermögenswertes ein temporäres Phänomen sind, das periodisch auf ihren Mittelwert zurückkehrt. Identifizieren und Definieren einer Preisspanne und Implementierung von Algorithmen auf der Grundlage, dass Trades automatisch platziert werden, wenn der Preis von Asset Pausen in und aus seinem definierten Bereich. Die volumengewichtete durchschnittliche Preisstrategie zerbricht einen großen Auftrag und gibt dynamisch bestimmte kleinere Stücke des Auftrags auf den Markt mit Aktienspezifischen historischen Volumenprofilen frei. Ziel ist es, den Auftrag in der Nähe des volumengewichteten Durchschnittspreises (VWAP) auszuführen und damit zu einem durchschnittlichen Preis zu profitieren. Die zeitgewichtete durchschnittliche Preisstrategie zerbricht einen großen Auftrag und gibt dynamisch bestimmte kleinere Stücke des Auftrags auf den Markt mit gleichmäßig geteilten Zeitschlitzen zwischen Start - und Endzeit frei. Ziel ist es, den Auftrag in der Nähe des Durchschnittspreises zwischen Start - und Endzeiten auszuführen und damit die Markteinwirkung zu minimieren. Bis der Trade Order vollständig ausgefüllt ist, fährt dieser Algorithmus fort, Teilaufträge zu senden, entsprechend der definierten Beteiligungsquote und nach dem Volumen, das auf den Märkten gehandelt wird. Die zugehörige Schrittstrategie sendet Aufträge zu einem benutzerdefinierten Prozentsatz des Marktvolumens und erhöht oder verringert diese Erwerbsquote, wenn der Aktienkurs benutzerdefinierte Werte erreicht. Die Implementierungs-Defizitstrategie zielt darauf ab, die Ausführungskosten eines Auftrags durch den Handel auf dem Echtzeitmarkt zu minimieren und dadurch die Kosten der Bestellung zu senken und von den Opportunitätskosten der verzögerten Ausführung zu profitieren. Die Strategie wird die gezielte Erwerbsquote erhöhen, wenn sich der Aktienkurs günstig bewegt und abnimmt, wenn sich der Aktienkurs negativ bewegt. Es gibt ein paar spezielle Klassen von Algorithmen, die versuchen, Ereignisse auf der anderen Seite zu identifizieren. Diese Sniffing-Algorithmen, die zum Beispiel von einem Sell-Side-Market-Maker verwendet werden, haben die eingebaute Intelligenz, um die Existenz von Algorithmen auf der Kaufseite eines großen Auftrags zu identifizieren. Solche Erkennung durch Algorithmen wird dem Marktmacher dabei helfen, große Auftragsmöglichkeiten zu identifizieren und ihm zu ermöglichen, durch die Besetzung der Aufträge zu einem höheren Preis zu profitieren. Dies wird manchmal als Hightech-Frontlauf bezeichnet. (Für mehr auf High-Frequenz-Handel und betrügerische Praktiken, siehe: Wenn Sie Aktien kaufen Online, sind Sie in HFTs beteiligt.) Technische Voraussetzungen für Algorithmic Trading Die Umsetzung der Algorithmus mit einem Computer-Programm ist der letzte Teil, Clubbed mit Backtesting. Die Herausforderung besteht darin, die identifizierte Strategie in einen integrierten computergestützten Prozess umzuwandeln, der Zugang zu einem Handelskonto für die Platzierung von Aufträgen hat. Folgende werden benötigt: Computerprogrammierkenntnisse zur Programmierung der geforderten Handelsstrategie, angepasste Programmierer oder vorgefertigte Trading-Software Netzwerkkonnektivität und Zugriff auf Handelsplattformen für die Platzierung der Aufträge Der Zugriff auf Marktdaten-Feeds, die vom Algorithmus für die Möglichkeit der Platzierung überwacht werden Aufträge Die Fähigkeit und die Infrastruktur, das System einmalig zu testen, bevor es auf echten Märkten geht Erhältlich historische Daten für das Backtesting, abhängig von der Komplexität der im Algorithmus implementierten Regeln Hier ist ein umfassendes Beispiel: Royal Dutch Shell (RDS) ist in Amsterdam aufgeführt Börse (AEX) und Londoner Börse (LSE). Lets bauen einen Algorithmus, um Arbitrage-Möglichkeiten zu identifizieren. Hier sind einige interessante Beobachtungen: AEX handelt in Euro, während LSE in Pfund Sterling pflegt. Aufgrund der einstündigen Zeitdifferenz eröffnet AEX eine Stunde früher als LSE, gefolgt von beiden Börsen, die gleichzeitig für die nächsten Stunden handeln und dann nur in LSE handeln Die letzte Stunde als AEX schließt können wir die Möglichkeit der Arbitrage Handel auf der Royal Dutch Shell Aktie auf diesen beiden Märkten in zwei verschiedenen Währungen gelistet ein Computer-Programm, das aktuelle Marktpreise lesen können Preis Feeds von sowohl LSE und AEX A Forex Rate Feed für GBP-EUR Umrechnungskurs Bestellen von Platzierungsmöglichkeiten, die den Auftrag an den richtigen Austausch weiterleiten können Back-Testing-Fähigkeit zu historischen Preisfuttermitteln Das Computerprogramm sollte folgendes ausführen: Lesen Sie den eingehenden Preisvorschub der RDS-Aktie von beiden Börsen unter Verwendung der verfügbaren Wechselkurse . Umwandlung des Preises einer Währung in andere Wenn es eine ausreichend große Preisdiskrepanz (Abzinsung der Vermittlungskosten) gibt, die zu einer gewinnbringenden Gelegenheit führt, dann legen Sie den Kaufauftrag auf niedrigeren Preisvermittlungs - und Verkaufsauftrag auf höherer Preisvermittlung Wenn die Aufträge als ausgeführt werden Gewünscht, wird die Arbitrage Gewinn folgen Simple und Easy Allerdings ist die Praxis der algorithmischen Handel ist nicht so einfach zu pflegen und auszuführen. Denken Sie daran, wenn Sie einen Algo-generierten Handel platzieren können, so können die anderen Marktteilnehmer. Infolgedessen schwanken die Preise in Milli - und sogar Mikrosekunden. In dem obigen Beispiel, was passiert, wenn Ihr Kaufhandel ausgeführt wird, aber verkaufen Handel nicht als die Verkaufspreise ändern sich um die Zeit Ihre Bestellung trifft den Markt Sie werden am Ende sitzen mit einer offenen Position. Ihre Arbitrage-Strategie wertlos machen. Es gibt zusätzliche Risiken und Herausforderungen: z. B. Systemausfallrisiken, Netzwerkverbindungsfehler, Zeitverzögerungen zwischen Handelsaufträgen und Ausführung und vor allem unvollständige Algorithmen. Je komplexer ein Algorithmus ist, desto strengeres Backtesting ist nötig, bevor es in die Tat umgesetzt wird. Die quantitative Analyse einer Algorithmen-Performance spielt eine wichtige Rolle und sollte kritisch untersucht werden. Es ist spannend, für die Automatisierung zu helfen, die von Computern mit einer Vorstellung geboten wird, um mühelos Geld zu verdienen. Aber man muss sicherstellen, dass das System gründlich getestet ist und die erforderlichen Grenzwerte festgelegt sind. Analytische Händler sollten überlegen, Programmierung und Gebäude-Systeme auf eigene Faust zu lernen, um sicher zu sein, die Umsetzung der richtigen Strategien in narrensicherer Weise zu sein. Der vorsichtige Gebrauch und die gründliche Prüfung von algo-trading können rentable Chancen schaffen. Eine Art von Steuern, die auf Kapitalgewinne von Einzelpersonen und Kapitalgesellschaften angefallen sind. Kapitalgewinne sind die Gewinne, die ein Investor ist. Ein Auftrag, eine Sicherheit bei oder unter einem bestimmten Preis zu erwerben. Ein Kauflimitauftrag erlaubt es Händlern und Anlegern zu spezifizieren. Eine IRS-Regel (Internal Revenue Service), die strafrechtliche Abhebungen von einem IRA-Konto ermöglicht. Die Regel verlangt das. Der erste Verkauf von Aktien von einem privaten Unternehmen an die Öffentlichkeit. IPOs werden oft von kleineren, jüngeren Unternehmen ausgesucht. DebtEquity Ratio ist Schuldenquote verwendet, um eine company039s finanzielle Hebelwirkung oder eine Schuldenquote zu messen, um eine Person zu messen. Eine Art von Vergütungsstruktur, die Fondsmanager in der Regel beschäftigen, in welchem Teil der Vergütung Leistung basiert. Best Programmiersprache für algorithmische Handelssysteme Eine der häufigsten Fragen, die ich im QS-Postfach erhalten habe Was ist die beste Programmiersprache für den algorithmischen Handel. Die kurze Antwort ist, dass es keine beste Sprache gibt. Strategieparameter, Leistung, Modularität, Entwicklung, Ausfallsicherheit und Kosten sind zu berücksichtigen. Dieser Artikel skizziert die notwendigen Komponenten einer algorithmischen Handelssystemarchitektur und wie Entscheidungen in Bezug auf die Umsetzung die Wahl der Sprache beeinflussen. Erstens werden die Hauptkomponenten eines algorithmischen Handelssystems betrachtet, wie die Forschungsinstrumente, Portfolio-Optimierer, Risikomanager und Ausführungs-Engine. Anschließend werden verschiedene Handelsstrategien untersucht und wie sie das Design des Systems beeinflussen. Insbesondere wird die Häufigkeit des Handels und des wahrscheinlichen Handelsvolumens diskutiert. Sobald die Handelsstrategie ausgewählt wurde, ist es notwendig, das gesamte System zu architektieren. Dazu gehören die Auswahl der Hardware, das Betriebssystem und die System-Resilienz gegen seltene, potenziell katastrophale Ereignisse. Während die Architektur berücksichtigt wird, muss die Leistung - sowohl an die Forschungsinstrumente als auch an die Live-Ausführungsumgebung - gebührend berücksichtigt werden. Was ist das Trading-System zu tun Vor der Entscheidung über die beste Sprache, mit denen ein automatisiertes Handelssystem zu schreiben ist es notwendig, die Anforderungen zu definieren. Wird das System rein ausgeführt sein, wird das System ein Risikomanagement - oder Portfolio-Konstruktionsmodul erfordern. Das System benötigt einen leistungsstarken Backtester. Für die meisten Strategien kann das Handelssystem in zwei Kategorien aufgeteilt werden: Forschung und Signalgenerierung. Die Forschung beschäftigt sich mit der Bewertung einer Strategieleistung über historische Daten. Der Prozess der Auswertung einer Handelsstrategie gegenüber früheren Marktdaten wird als Backtesting bezeichnet. Die Datengröße und die algorithmische Komplexität haben einen großen Einfluss auf die Rechenintensität des Backtests. CPU-Geschwindigkeit und Parallelität sind oft die begrenzenden Faktoren bei der Optimierung der Forschungsdurchführungsgeschwindigkeit. Die Signalgenerierung beschäftigt sich mit der Erzeugung eines Satzes von Handelssignalen aus einem Algorithmus und dem Versenden solcher Aufträge auf den Markt, in der Regel über eine Vermittlung. Für bestimmte Strategien ist ein hohes Leistungsniveau erforderlich. IO-Themen wie Netzwerkbandbreite und Latenz sind oft der begrenzende Faktor bei der Optimierung von Ausführungssystemen. So kann die Wahl der Sprachen für jede Komponente Ihres Gesamtsystems ganz anders sein. Typ, Häufigkeit und Volumen der Strategie Die Art der eingesetzten algorithmischen Strategie wird sich erheblich auf die Gestaltung des Systems auswirken. Es wird notwendig sein, die gehandelten Märkte, die Konnektivität zu externen Datenanbietern, die Häufigkeit und das Volumen der Strategie, den Kompromiss zwischen der Leichtigkeit der Entwicklung und der Leistungsoptimierung sowie jede kundenspezifische Hardware, einschließlich der zusammengesetzten Sitte, zu berücksichtigen Server, GPUs oder FPGAs, die notwendig sein könnten. Die Technologie-Entscheidungen für eine niederfrequente US-Aktienstrategie unterscheiden sich deutlich von denen eines hochfrequenten statistischen Arbitrage-Strategiehandels auf dem Futures-Markt. Vor der Wahl der Sprache müssen viele Datenverkäufer ausgewertet werden, die sich auf die jeweilige Strategie beziehen. Es wird notwendig sein, die Konnektivität mit dem Anbieter, die Struktur von APIs, die Aktualität der Daten, die Speicheranforderungen und die Widerstandsfähigkeit im Angesicht eines Verkäufers, der offline geht, zu betrachten. Es ist auch klug, schnellen Zugriff auf mehrere Anbieter zu besitzen. Verschiedene Instrumente haben alle ihre eigenen Speicherquirks, Beispiele dafür sind mehrere Tickersymbole für Aktien und Verfallsdaten für Futures (ganz zu schweigen von bestimmten OTC-Daten). Dies muss in das Plattformdesign berücksichtigt werden. Häufigkeit der Strategie ist wahrscheinlich einer der größten Treiber, wie der Technologie-Stack definiert werden wird. Strategien, die Daten häufiger einsetzen als kleinere oder zweitens Bars, bedürfen einer beträchtlichen Berücksichtigung der Leistung. Eine Strategie, die zweitens Stäbe übersteigt (d. h. Tick-Daten), führt zu einem leistungsgesteuerten Design als primäre Anforderung. Für Hochfrequenzstrategien müssen erhebliche Marktdaten gespeichert und ausgewertet werden. Software wie HDF5 oder kdb werden häufig für diese Rollen verwendet. Um die umfangreichen Datenmengen für HFT-Anwendungen zu verarbeiten, muss ein weitgehend optimiertes Backtester - und Ausführungssystem eingesetzt werden. CC (möglicherweise mit einigen Assembler) ist wahrscheinlich der stärkste Sprachkandidat. Ultra-High-Frequenz-Strategien werden fast sicherlich benutzerdefinierte Hardware wie FPGAs, Austausch Co-Location und Kern-Netzwerk-Interface-Tuning. Forschungssysteme Forschungssysteme beinhalten in der Regel eine Mischung aus interaktiver Entwicklung und automatisiertem Scripting. Die ehemalige findet oft in einer IDE wie Visual Studio, MatLab oder R Studio statt. Letzteres beinhaltet umfangreiche numerische Berechnungen über zahlreiche Parameter und Datenpunkte. Dies führt zu einer Sprachwahl, die eine einfache Umgebung bietet, um Code zu testen, bietet aber auch eine ausreichende Leistung, um Strategien über mehrere Parameterdimensionen zu bewerten. Typische IDEs in diesem Bereich sind Microsoft Visual CC, das umfangreiche Debugging-Dienstprogramme, Code-Completion-Funktionen (via Intellisense) und einfache Übersichten des gesamten Projektstacks (über die Datenbank ORM, LINQ) MatLab enthält. Die für umfangreiche numerische lineare Algebra und vektorisierte Operationen ausgelegt ist, aber in einer interaktiven Konsolenweise R Studio. Die die R statistische Sprachkonsole in einer vollwertigen IDE Eclipse IDE für Linux Java und C und semi-proprietäre IDEs wie Enthought Canopy für Python, die Datenanalyse Bibliotheken wie NumPy enthalten. SciPy Scikit-lernen und pandas in einer einzigen interaktiven (Konsole) Umgebung. Für das numerische Backtesting sind alle oben genannten Sprachen geeignet, obwohl es nicht notwendig ist, eine GUIIDE zu verwenden, da der Code im Hintergrund ausgeführt wird. Die Hauptbetrachtung in diesem Stadium ist die der Ausführungsgeschwindigkeit. Eine kompilierte Sprache (wie z. B. C) ist oft nützlich, wenn die Backtesting-Parameter-Dimensionen groß sind. Denken Sie daran, dass es notwendig ist, vor solchen Systemen vorsichtig zu sein, wenn dies der Fall ist. Interpretierte Sprachen wie Python nutzen oft Hochleistungsbibliotheken wie NumPypandas für den Backtesting-Schritt, um ein angemessenes Maß an Wettbewerbsfähigkeit mit kompilierten Äquivalenten aufrechtzuerhalten. Letztlich wird die für das Backtesting gewählte Sprache durch spezifische algorithmische Bedürfnisse sowie die Bandbreite der in der Sprache verfügbaren Bibliotheken bestimmt (mehr dazu unten). Allerdings kann die Sprache, die für den Backtester und die Forschungsumgebungen verwendet wird, völlig unabhängig von denen sein, die in der Portfolio-Konstruktion, dem Risikomanagement und den Ausführungskomponenten verwendet werden, wie zu sehen ist. Portfolio-Konstruktion und Risikomanagement Die Portfoliokonstruktions - und Risikomanagementkomponenten werden oft von den algorithmischen Händlern des Einzelhandels übersehen. Das ist fast immer ein Fehler. Diese Werkzeuge bieten den Mechanismus, durch den das Kapital erhalten bleibt. Sie versuchen nicht nur, die Anzahl der riskanten Wetten zu lindern, sondern auch die Churn der Trades selbst zu minimieren und die Transaktionskosten zu senken. Ausgefeilte Versionen dieser Komponenten können sich erheblich auf die Qualität und die Konsequenz der Rentabilität auswirken. Es ist einfach, einen Stab von Strategien zu schaffen, da der Portfolio-Konstruktionsmechanismus und der Risikomanager leicht modifiziert werden können, um mehrere Systeme zu behandeln. So sollten sie zu Beginn der Gestaltung eines algorithmischen Handelssystems als wesentliche Komponenten betrachtet werden. Die Aufgabe des Portfolio-Bausystems ist es, eine Reihe von gewünschten Trades zu tätigen und die Menge der tatsächlichen Trades zu produzieren, die den Churn minimieren, die Exposition gegenüber verschiedenen Faktoren (wie Sektoren, Assetklassen, Volatilität usw.) aufrechterhalten und die Zuteilung von Kapital zu verschiedenen optimieren Strategien in einem Portfolio. Der Portfolioaufbau reduziert sich häufig auf ein lineares Algebra-Problem (wie z. B. eine Matrixfaktorisierung) und damit ist die Leistung in hohem Maße von der Effektivität der numerischen linearen Algebra-Implementierung abhängig. Gemeinsame Bibliotheken beinhalten uBLAS. LAPACK und NAG für C. MatLab besitzt auch weitgehend optimierte Matrixoperationen. Python nutzt NumPySciPy für solche Berechnungen. Ein häufig neu ausgewogenes Portfolio erfordert eine kompilierte (und gut optimierte) Matrixbibliothek, um diesen Schritt auszuführen, um das Handelssystem nicht zu verschränken. Das Risikomanagement ist ein weiterer äußerst wichtiger Bestandteil eines algorithmischen Handelssystems. Risiko kann in vielen Formen kommen: Erhöhte Volatilität (obwohl dies für bestimmte Strategien als wünschenswert angesehen werden kann), erhöhte Korrelationen zwischen Assetklassen, Gegenpartei-Default, Serverausfälle, Black-Swan-Events und unentdeckte Bugs im Handelscode, um einen Namen zu nennen wenige. Risikomanagementkomponenten versuchen und erwarten die Auswirkungen einer übermäßigen Volatilität und Korrelation zwischen den Assetklassen und ihren nachfolgenden Auswirkungen auf das Handelskapital. Oft reduziert sich dies auf eine Reihe von statistischen Berechnungen wie Monte Carlo Stresstests. Dies ist sehr ähnlich wie die rechnerischen Bedürfnisse einer Derivate-Pricing-Engine und als solche wird CPU-gebunden. Diese Simulationen sind sehr parallelisierbar (siehe unten) und bis zu einem gewissen Grad ist es möglich, Hardware auf das Problem zu werfen. Ausführungssysteme Die Aufgabe des Ausführungssystems ist es, gefilterte Handelssignale aus den Portfoliokonstruktionen und Risikomanagementkomponenten zu erhalten und sie an eine Vermittlung oder andere Marktmittel zu senden. Für die Mehrheit der Einzelhandels-algorithmischen Handelsstrategien handelt es sich dabei um eine API - oder FIX-Verbindung zu einem Brokerage wie Interactive Brokers. Die primären Überlegungen bei der Entscheidung über eine Sprache beinhalten die Qualität der API, die Sprache-Wrapper-Verfügbarkeit für eine API, die Ausführungsfrequenz und den zu erwartenden Schlupf. Die Qualität der API verweist darauf, wie gut dokumentiert es ist, welche Art von Leistung es bietet, ob es sich um eine eigenständige Software handelt, auf die zugegriffen werden kann oder ob ein Gateway kopflos aufgebaut werden kann (d. h. keine GUI). Im Falle von Interactive Brokers muss das Trader WorkStation-Tool in einer GUI-Umgebung ausgeführt werden, um auf ihre API zuzugreifen. Ich musste einmal eine Desktop Ubuntu Edition auf einen Amazon Cloud Server installieren, um interaktive Broker remote zugreifen zu können, rein aus diesem Grund Die meisten APIs stellen eine C andor Java Schnittstelle zur Verfügung. In der Regel ist es Aufgabe der Community, sprachspezifische Wrapper für C, Python, R, Excel und MatLab zu entwickeln. Beachten Sie, dass mit jedem zusätzlichen Plugin verwendet (vor allem API Wrapper) gibt es Spielraum für Bugs, um in das System zu kriechen. Testen Sie immer Plugins dieser Art und stellen Sie sicher, dass sie aktiv gepflegt werden. Ein lohnender Messgerät ist zu sehen, wie viele neue Updates zu einer Codebasis in den letzten Monaten gemacht wurden. Die Ausführungshäufigkeit ist im Ausführungsalgorithmus von größter Bedeutung. Beachten Sie, dass Hunderte von Aufträgen jede Minute gesendet werden können und als solche Leistung kritisch ist. Der Schlupf wird durch ein leistungsstarkes Abwicklungssystem entstehen und dies wird einen dramatischen Einfluss auf die Rentabilität haben. Statisch typisierte Sprachen (siehe unten) wie CJava sind in der Regel optimal für die Ausführung, aber es gibt einen Kompromiss in Entwicklungszeit, Test und Wartungsfreundlichkeit. Dynamisch typisierte Sprachen wie Python und Perl sind jetzt in der Regel schnell genug. Achten Sie stets darauf, dass die Bauteile modular aufgebaut sind (siehe unten), so dass sie als Systemwaage ausgetauscht werden können. Architektonischer Planungs - und Entwicklungsprozess Die Komponenten eines Handelssystems, dessen Frequenz - und Volumenanforderungen wurden oben diskutiert, aber die Systeminfrastruktur ist noch nicht abgedeckt. Diejenigen, die als Einzelhändler handeln oder in einem kleinen Fonds arbeiten, werden wahrscheinlich viele Hüte tragen. Es wird notwendig sein, das Alpha-Modell, das Risikomanagement und die Ausführungsparameter sowie die endgültige Implementierung des Systems abdecken zu können. Bevor wir in spezifische Sprachen eintauchen, wird die Gestaltung einer optimalen Systemarchitektur diskutiert. Trennung von Bedenken Eine der wichtigsten Entscheidungen, die zu Beginn getroffen werden müssen, ist, wie man die Anliegen eines Handelssystems trennen kann. In der Softwareentwicklung bedeutet dies im Wesentlichen, wie man die verschiedenen Aspekte des Handelssystems in separate modulare Komponenten zerlegt. Durch das Belichten von Schnittstellen an jedem der Komponenten ist es einfach, Teile des Systems für andere Versionen auszutauschen, die Leistung, Zuverlässigkeit oder Wartung unterstützen, ohne irgendeinen externen Abhängigkeitscode zu modifizieren. Dies ist die beste Praxis für solche Systeme. Für Strategien bei niedrigeren Frequenzen werden solche Praktiken empfohlen. Für den Hochfrequenzhandel muss das Regelwerk auf Kosten der Optimierung des Systems für noch mehr Leistung ignoriert werden. Ein stärker gekoppeltes System kann wünschenswert sein. Das Erstellen einer Komponentenkarte eines algorithmischen Handelssystems ist einen Artikel an sich wert. Allerdings ist ein optimaler Ansatz, um sicherzustellen, dass es getrennte Komponenten für die historischen und Echtzeit-Marktdateneingaben, Datenspeicherung, Datenzugriffs-API, Backtester, Strategieparameter, Portfolio-Konstruktion, Risikomanagement und automatisierte Ausführungssysteme gibt. Zum Beispiel, wenn der verwendete Datenspeicher derzeit auch unter erheblichen Optimierungsniveaus unterdurchschnittlich ist, kann er mit minimaler Umschreibung auf die Datenaufnahme oder Datenzugriffs-API ausgetauscht werden. So weit wie der Backtester und nachfolgende Komponenten betroffen sind, gibt es keinen Unterschied. Ein weiterer Vorteil von getrennten Komponenten ist, dass es eine Vielzahl von Programmiersprachen im Gesamtsystem verwendet werden kann. Es besteht keine Notwendigkeit, auf eine einzige Sprache beschränkt zu sein, wenn die Kommunikationsmethode der Komponenten sprachunabhängig ist. Dies ist der Fall, wenn sie über TCPIP, ZeroMQ oder ein anderes sprachunabhängiges Protokoll kommunizieren. Als konkretes Beispiel ist der Fall eines Backtesting-Systems zu betrachten, das in C für die Zahl Crunching-Performance geschrieben wird, während die Portfolio-Manager und Ausführungs-Systeme in Python mit SciPy und IBPy geschrieben werden. Leistungsüberlegungen Die Performance ist für die meisten Handelsstrategien von großer Bedeutung. Für höhere Frequenzstrategien ist es der wichtigste Faktor. Die Leistung deckt eine breite Palette von Problemen ab, wie etwa die algorithmische Ausführungsgeschwindigkeit, die Netzwerklatenz, die Bandbreite, die Daten IO, die Konkurrenz und die Skalierung. Jeder dieser Bereiche wird individuell von großen Lehrbüchern abgedeckt, so dass dieser Artikel nur die Oberfläche jedes Themas kratzen wird. Architektur und Sprachwahl werden nun in Bezug auf ihre Auswirkungen auf die Leistung diskutiert. Die vorherrschende Weisheit, wie von Donald Knuth angegeben. Einer der Väter der Informatik, ist die vorzeitige Optimierung die Wurzel allen Übels. Dies ist fast immer der Fall - außer beim Aufbau eines hochfrequenten Trading-Algorithmus Für diejenigen, die sich für niederfrequente Strategien interessieren, ist ein gemeinsamer Ansatz, ein System auf die einfachste Weise zu bauen und nur zu optimieren, wenn Engpässe beginnen zu erscheinen. Profiling-Tools werden verwendet, um festzustellen, wo Engpässe entstehen. Profile können für alle oben aufgeführten Faktoren erstellt werden, entweder in einer MS Windows - oder Linux-Umgebung. Es gibt viele Betriebssystem-und Sprach-Tools zur Verfügung, um dies zu tun, sowie Drittanbieter-Dienstprogramme. Die Sprachwahl wird nun im Rahmen der Performance diskutiert. C, Java, Python, R und MatLab enthalten alle Hochleistungsbibliotheken (entweder als Teil ihres Standards oder extern) für die Grunddatenstruktur und die algorithmische Arbeit. C-Schiffe mit der Standard-Vorlagenbibliothek, während Python NumPySciPy enthält. Gemeinsame mathematische Aufgaben sind in diesen Bibliotheken zu finden und es ist selten vorteilhaft, eine neue Implementierung zu schreiben. Eine Ausnahme ist, wenn eine hochgradig angepasste Hardwarearchitektur erforderlich ist und ein Algorithmus umfangreiche Verwendung von proprietären Erweiterungen (wie z. B. benutzerdefinierte Caches) macht. Allerdings verschwendet oft die Neuerung des Rades Zeit, die besser ausgegeben werden könnte, um andere Teile der Handelsinfrastruktur zu entwickeln und zu optimieren. Entwicklungszeit ist vor allem im Kontext von Sohlenentwicklern äußerst wertvoll. Latenz ist oft ein Thema des Ausführungssystems, da die Forschungsinstrumente meist auf derselben Maschine liegen. Für die ersteren kann die Latenzzeit an mehreren Punkten entlang des Ausführungspfades auftreten. Datenbanken müssen konsultiert werden (Disknetwork Latency), Signale müssen generiert werden (Betriebssyste, kernal Messaging Latenz), Handelssignale gesendet (NIC Latenz) und Aufträge verarbeitet (Austausch der internen Latenz des Systems). Für höhere Frequenzoperationen ist es notwendig, sich mit der kernalen Optimierung sowie der Optimierung der Netzwerkübertragung vertraut zu machen. Dies ist ein tiefer Bereich und ist deutlich über den Umfang des Artikels, aber wenn ein UHFT-Algorithmus gewünscht wird dann bewusst sein, die Tiefe des Wissens erforderlich Caching ist sehr nützlich in der Toolkit eines quantitativen Handel Entwickler. Caching bezieht sich auf das Konzept der Speicherung von häufig zugegriffenen Daten in einer Weise, die einen leistungsfähigeren Zugriff ermöglicht, auf Kosten der potentiellen Staleness der Daten. Ein häufiger Anwendungsfall tritt bei der Web-Entwicklung bei der Datenübertragung von einer disk-backed relationalen Datenbank auf und setzt sie in den Speicher. Alle nachfolgenden Anfragen für die Daten müssen nicht auf die Datenbank treffen und so können Leistungssteigerungen erheblich sein. Für Handelssituationen kann das Caching äußerst vorteilhaft sein. Zum Beispiel kann der aktuelle Status eines Strategieportfolios in einem Cache gespeichert werden, bis er neu ausgeglichen wird, so dass die Liste nicht auf jeder Schleife des Handelsalgorithmus regeneriert werden muss. Eine solche Regeneration ist wahrscheinlich eine hohe CPU - oder Festplatten-IO-Operation. Das Caching ist jedoch nicht ohne eigene Probleme. Die Regeneration von Cache-Daten auf einmal, aufgrund der volatilen Natur des Cache-Speichers, kann erhebliche Nachfrage nach Infrastruktur stellen. Ein weiteres Problem ist das Hunde-Stapeln. Wo mehrere Generationen einer neuen Cache-Kopie unter extrem hoher Belastung durchgeführt werden, was zu Kaskadenfehler führt. Die dynamische Speicherzuordnung ist eine teure Bedienung bei der Softwareausführung. So ist es zwingend erforderlich, dass hochleistungsfähige Handelsanwendungen sich bewusst sind, wie Speicher während des Programmablaufs zugewiesen und freigegeben wird. Neuere Sprachstandards wie Java, C und Python führen automatisch eine automatische Garbage Collection durch. Die sich auf die Freigabe des dynamisch zugewiesenen Speichers bezieht, wenn Objekte aus dem Geltungsbereich gehen. Garbage Collection ist äußerst nützlich während der Entwicklung, da es Fehler reduziert und hilft Lesbarkeit. Allerdings ist es für bestimmte Hochfrequenz-Handelsstrategien oftmals suboptimal. Für diese Fälle ist oft eine benutzerdefinierte Garbage Collection erwünscht. In Java, zum Beispiel durch Abstimmung der Garbage Collector und Heap-Konfiguration, ist es möglich, hohe Leistung für HFT-Strategien zu erhalten. C stellt keinen nativen Garbage Collector zur Verfügung und so ist es notwendig, alle Speicherzuweisungen als Teil einer Objektimplementierung zu behandeln. Während potenziell fehleranfällig (potenziell zu baumelnden Zeigern führen) ist es äußerst nützlich, eine feinkörnige Kontrolle darüber zu haben, wie Objekte auf dem Haufen für bestimmte Anwendungen erscheinen. Bei der Auswahl einer Sprache ist zu beachten, wie der Müllsammler arbeitet und ob er modifiziert werden kann, um für einen bestimmten Anwendungsfall zu optimieren. Viele Operationen in algorithmischen Handelssystemen sind der Parallelisierung zugänglich. Dies bezieht sich auf das Konzept der Durchführung mehrerer programmatischer Operationen zur gleichen Zeit, d. h. parallel. So-called embarassingly parallel algorithms include steps that can be computed fully independently of other steps. Certain statistical operations, such as Monte Carlo simulations, are a good example of embarassingly parallel algorithms as each random draw and subsequent path operation can be computed without knowledge of other paths. Other algorithms are only partially parallelisable. Fluid dynamics simulations are such an example, where the domain of computation can be subdivided, but ultimately these domains must communicate with each other and thus the operations are partially sequential. Parallelisable algorithms are subject to Amdahls Law. which provides a theoretical upper limit to the performance increase of a parallelised algorithm when subject to N separate processes (e. g. on a CPU core or thread ). Parallelisation has become increasingly important as a means of optimisation since processor clock-speeds have stagnated, as newer processors contain many cores with which to perform parallel calculations. The rise of consumer graphics hardware (predominently for video games) has lead to the development of Graphical Processing Units (GPUs), which contain hundreds of cores for highly concurrent operations. Such GPUs are now very affordable. High-level frameworks, such as Nvidias CUDA have lead to widespread adoption in academia and finance. Such GPU hardware is generally only suitable for the research aspect of quantitative finance, whereas other more specialised hardware (including Field-Programmable Gate Arrays - FPGAs) are used for (U)HFT. Nowadays, most modern langauges support a degree of concurrencymultithreading. Thus it is straightforward to optimise a backtester, since all calculations are generally independent of the others. Scaling in software engineering and operations refers to the ability of the system to handle consistently increasing loads in the form of greater requests, higher processor usage and more memory allocation. In algorithmic trading a strategy is able to scale if it can accept larger quantities of capital and still produce consistent returns. The trading technology stack scales if it can endure larger trade volumes and increased latency, without bottlenecking . While systems must be designed to scale, it is often hard to predict beforehand where a bottleneck will occur. Rigourous logging, testing, profiling and monitoring will aid greatly in allowing a system to scale. Languages themselves are often described as unscalable. This is usually the result of misinformation, rather than hard fact. It is the total technology stack that should be ascertained for scalability, not the language. Clearly certain languages have greater performance than others in particular use cases, but one language is never better than another in every sense. One means of managing scale is to separate concerns, as stated above. In order to further introduce the ability to handle spikes in the system (i. e. sudden volatility which triggers a raft of trades), it is useful to create a message queuing architecture. This simply means placing a message queue system between components so that orders are stacked up if a certain component is unable to process many requests. Rather than requests being lost they are simply kept in a stack until the message is handled. This is particularly useful for sending trades to an execution engine. If the engine is suffering under heavy latency then it will back up trades. A queue between the trade signal generator and the execution API will alleviate this issue at the expense of potential trade slippage. A well-respected open source message queue broker is RabbitMQ . Hardware and Operating Systems The hardware running your strategy can have a significant impact on the profitability of your algorithm. This is not an issue restricted to high frequency traders either. A poor choice in hardware and operating system can lead to a machine crash or reboot at the most inopportune moment. Thus it is necessary to consider where your application will reside. The choice is generally between a personal desktop machine, a remote server, a cloud provider or an exchange co-located server. Desktop machines are simple to install and administer, especially with newer user friendly operating systems such as Windows 78, Mac OSX and Ubuntu. Desktop systems do possess some significant drawbacks, however. The foremost is that the versions of operating systems designed for desktop machines are likely to require rebootspatching (and often at the worst of times). They also use up more computational resources by the virtue of requiring a graphical user interface (GUI). Utilising hardware in a home (or local office) environment can lead to internet connectivity and power uptime problems. The main benefit of a desktop system is that significant computational horsepower can be purchased for the fraction of the cost of a remote dedicated server (or cloud based system) of comparable speed. A dedicated server or cloud-based machine, while often more expensive than a desktop option, allows for more significant redundancy infrastructure, such as automated data backups, the ability to more straightforwardly ensure uptime and remote monitoring. They are harder to administer since they require the ability to use remote login capabilities of the operating system. In Windows this is generally via the GUI Remote Desktop Protocol (RDP). In Unix-based systems the command-line Secure SHell (SSH) is used. Unix-based server infrastructure is almost always command-line based which immediately renders GUI-based programming tools (such as MatLab or Excel) to be unusable. A co-located server, as the phrase is used in the capital markets, is simply a dedicated server that resides within an exchange in order to reduce latency of the trading algorithm. This is absolutely necessary for certain high frequency trading strategies, which rely on low latency in order to generate alpha. The final aspect to hardware choice and the choice of programming language is platform-independence. Is there a need for the code to run across multiple different operating systems Is the code designed to be run on a particular type of processor architecture, such as the Intel x86x64 or will it be possible to execute on RISC processors such as those manufactured by ARM These issues will be highly dependent upon the frequency and type of strategy being implemented. Resilience and Testing One of the best ways to lose a lot of money on algorithmic trading is to create a system with no resiliency . This refers to the durability of the sytem when subject to rare events, such as brokerage bankruptcies, sudden excess volatility, region-wide downtime for a cloud server provider or the accidental deletion of an entire trading database. Years of profits can be eliminated within seconds with a poorly-designed architecture. It is absolutely essential to consider issues such as debuggng, testing, logging, backups, high-availability and monitoring as core components of your system. It is likely that in any reasonably complicated custom quantitative trading application at least 50 of development time will be spent on debugging, testing and maintenance. Nearly all programming languages either ship with an associated debugger or possess well-respected third-party alternatives. In essence, a debugger allows execution of a program with insertion of arbitrary break points in the code path, which temporarily halt execution in order to investigate the state of the system. The main benefit of debugging is that it is possible to investigate the behaviour of code prior to a known crash point . Debugging is an essential component in the toolbox for analysing programming errors. However, they are more widely used in compiled languages such as C or Java, as interpreted languages such as Python are often easier to debug due to fewer LOC and less verbose statements. Despite this tendency Python does ship with the pdb. which is a sophisticated debugging tool. The Microsoft Visual C IDE possesses extensive GUI debugging utilities, while for the command line Linux C programmer, the gdb debugger exists. Testing in software development refers to the process of applying known parameters and results to specific functions, methods and objects within a codebase, in order to simulate behaviour and evaluate multiple code-paths, helping to ensure that a system behaves as it should. A more recent paradigm is known as Test Driven Development (TDD), where test code is developed against a specified interface with no implementation. Prior to the completion of the actual codebase all tests will fail. As code is written to fill in the blanks, the tests will eventually all pass, at which point development should cease. TDD requires extensive upfront specification design as well as a healthy degree of discipline in order to carry out successfully. In C, Boost provides a unit testing framework. In Java, the JUnit library exists to fulfill the same purpose. Python also has the unittest module as part of the standard library. Many other languages possess unit testing frameworks and often there are multiple options. In a production environment, sophisticated logging is absolutely essential. Logging refers to the process of outputting messages, with various degrees of severity, regarding execution behaviour of a system to a flat file or database. Logs are a first line of attack when hunting for unexpected program runtime behaviour. Unfortunately the shortcomings of a logging system tend only to be discovered after the fact As with backups discussed below, a logging system should be given due consideration BEFORE a system is designed. Both Microsoft Windows and Linux come with extensive system logging capability and programming languages tend to ship with standard logging libraries that cover most use cases. It is often wise to centralise logging information in order to analyse it at a later date, since it can often lead to ideas about improving performance or error reduction, which will almost certainly have a positive impact on your trading returns. While logging of a system will provide information about what has transpired in the past, monitoring of an application will provide insight into what is happening right now . All aspects of the system should be considered for monitoring. System level metrics such as disk usage, available memory, network bandwidth and CPU usage provide basic load information. Trading metrics such as abnormal pricesvolume, sudden rapid drawdowns and account exposure for different sectorsmarkets should also be continuously monitored. Further, a threshold system should be instigated that provides notification when certain metrics are breached, elevating the notification method (email, SMS, automated phone call) depending upon the severity of the metric. System monitoring is often the domain of the system administrator or operations manager. However, as a sole trading developer, these metrics must be established as part of the larger design. Many solutions for monitoring exist: proprietary, hosted and open source, which allow extensive customisation of metrics for a particular use case. Backups and high availability should be prime concerns of a trading system. Consider the following two questions: 1) If an entire production database of market data and trading history was deleted (without backups) how would the research and execution algorithm be affected 2) If the trading system suffers an outage for an extended period (with open positions) how would account equity and ongoing profitability be affected The answers to both of these questions are often sobering It is imperative to put in place a system for backing up data and also for testing the restoration of such data. Many individuals do not test a restore strategy. If recovery from a crash has not been tested in a safe environment, what guarantees exist that restoration will be available at the worst possible moment Similarly, high availability needs to be baked in from the start. Redundant infrastructure (even at additional expense) must always be considered, as the cost of downtime is likely to far outweigh the ongoing maintenance cost of such systems. I wont delve too deeply into this topic as it is a large area, but make sure it is one of the first considerations given to your trading system. Choosing a Language Considerable detail has now been provided on the various factors that arise when developing a custom high-performance algorithmic trading system. The next stage is to discuss how programming languages are generally categorised. Type Systems When choosing a language for a trading stack it is necessary to consider the type system . The languages which are of interest for algorithmic trading are either statically - or dynamically-typed . A statically-typed language performs checks of the types (e. g. integers, floats, custom classes etc) during the compilation process. Such languages include C and Java. A dynamically-typed language performs the majority of its type-checking at runtime. Such languages include Python, Perl and JavaScript. For a highly numerical system such as an algorithmic trading engine, type-checking at compile time can be extremely beneficial, as it can eliminate many bugs that would otherwise lead to numerical errors. However, type-checking doesnt catch everything, and this is where exception handling comes in due to the necessity of having to handle unexpected operations. Dynamic languages (i. e. those that are dynamically-typed) can often lead to run-time errors that would otherwise be caught with a compilation-time type-check. For this reason, the concept of TDD (see above) and unit testing arose which, when carried out correctly, often provides more safety than compile-time checking alone. Another benefit of statically-typed languages is that the compiler is able to make many optimisations that are otherwise unavailable to the dynamically - typed language, simply because the type (and thus memory requirements) are known at compile-time. In fact, part of the inefficiency of many dynamically-typed languages stems from the fact that certain objects must be type-inspected at run-time and this carries a performance hit. Libraries for dynamic languages, such as NumPySciPy alleviate this issue due to enforcing a type within arrays. Open Source or Proprietary One of the biggest choices available to an algorithmic trading developer is whether to use proprietary (commercial) or open source technologies. There are advantages and disadvantages to both approaches. It is necessary to consider how well a language is supported, the activity of the community surrounding a language, ease of installation and maintenance, quality of the documentation and any licensingmaintenance costs. The Microsoft stack (including Visual C, Visual C) and MathWorks MatLab are two of the larger proprietary choices for developing custom algorithmic trading software. Both tools have had significant battle testing in the financial space, with the former making up the predominant software stack for investment banking trading infrastructure and the latter being heavily used for quantitative trading research within investment funds. Microsoft and MathWorks both provide extensive high quality documentation for their products. Further, the communities surrounding each tool are very large with active web forums for both. The software allows cohesive integration with multiple languages such as C, C and VB, as well as easy linkage to other Microsoft products such as the SQL Server database via LINQ. MatLab also has many pluginslibraries (some free, some commercial) for nearly any quantitative research domain. There are also drawbacks. With either piece of software the costs are not insignificant for a lone trader (although Microsoft does provide entry-level version of Visual Studio for free). Microsoft tools play well with each other, but integrate less well with external code. Visual Studio must also be executed on Microsoft Windows, which is arguably far less performant than an equivalent Linux server which is optimally tuned. MatLab also lacks a few key plugins such as a good wrapper around the Interactive Brokers API, one of the few brokers amenable to high-performance algorithmic trading. The main issue with proprietary products is the lack of availability of the source code. This means that if ultra performance is truly required, both of these tools will be far less attractive. Open source tools have been industry grade for sometime. Much of the alternative asset space makes extensive use of open-source Linux, MySQLPostgreSQL, Python, R, C and Java in high-performance production roles. However, they are far from restricted to this domain. Python and R, in particular, contain a wealth of extensive numerical libraries for performing nearly any type of data analysis imaginable, often at execution speeds comparable to compiled languages, with certain caveats. The main benefit of using interpreted languages is the speed of development time. Python and R require far fewer lines of code (LOC) to achieve similar functionality, principally due to the extensive libraries. Further, they often allow interactive console based development, rapidly reducing the iterative development process. Given that time as a developer is extremely valuable, and execution speed often less so (unless in the HFT space), it is worth giving extensive consideration to an open source technology stack. Python and R possess significant development communities and are extremely well supported, due to their popularity. Documentation is excellent and bugs (at least for core libraries) remain scarce. Open source tools often suffer from a lack of a dedicated commercial support contract and run optimally on systems with less-forgiving user interfaces. A typical Linux server (such as Ubuntu) will often be fully command-line oriented. In addition, Python and R can be slow for certain execution tasks. There are mechanisms for integrating with C in order to improve execution speeds, but it requires some experience in multi-language programming. While proprietary software is not immune from dependencyversioning issues it is far less common to have to deal with incorrect library versions in such environments. Open source operating systems such as Linux can be trickier to administer. I will venture my personal opinion here and state that I build all of my trading tools with open source technologies. In particular I use: Ubuntu, MySQL, Python, C and R. The maturity, community size, ability to dig deep if problems occur and lower total cost ownership (TCO) far outweigh the simplicity of proprietary GUIs and easier installations. Having said that, Microsoft Visual Studio (especially for C) is a fantastic Integrated Development Environment (IDE) which I would also highly recommend. Batteries Included The header of this section refers to the out of the box capabilities of the language - what libraries does it contain and how good are they This is where mature languages have an advantage over newer variants. C, Java and Python all now possess extensive libraries for network programming, HTTP, operating system interaction, GUIs, regular expressions (regex), iteration and basic algorithms. C is famed for its Standard Template Library (STL) which contains a wealth of high performance data structures and algorithms for free. Python is known for being able to communicate with nearly any other type of systemprotocol (especially the web), mostly through its own standard library. R has a wealth of statistical and econometric tools built in, while MatLab is extremely optimised for any numerical linear algebra code (which can be found in portfolio optimisation and derivatives pricing, for instance). Outside of the standard libraries, C makes use of the Boost library, which fills in the missing parts of the standard library. In fact, many parts of Boost made it into the TR1 standard and subsequently are available in the C11 spec, including native support for lambda expressions and concurrency. Python has the high performance NumPySciPyPandas data analysis library combination, which has gained widespread acceptance for algorithmic trading research. Further, high-performance plugins exist for access to the main relational databases, such as MySQL (MySQLC), JDBC (JavaMatLab), MySQLdb (MySQLPython) and psychopg2 (PostgreSQLPython). Python can even communicate with R via the RPy plugin An often overlooked aspect of a trading system while in the initial research and design stage is the connectivity to a broker API. Most APIs natively support C and Java, but some also support C and Python, either directly or with community-provided wrapper code to the C APIs. In particular, Interactive Brokers can be connected to via the IBPy plugin. If high-performance is required, brokerages will support the FIX protocol . Conclusion As is now evident, the choice of programming language(s) for an algorithmic trading system is not straightforward and requires deep thought. The main considerations are performance, ease of development, resiliency and testing, separation of concerns, familiarity, maintenance, source code availability, licensing costs and maturity of libraries. The benefit of a separated architecture is that it allows languages to be plugged in for different aspects of a trading stack, as and when requirements change. A trading system is an evolving tool and it is likely that any language choices will evolve along with it. Just Getting Started with Quantitative TradingAs purely a computer scientist youre in the perfect position to get started in algorithmic trading. This is something Ive witnessed firsthand at Quantiacs1. where scientists and engineers are able to jump right into automated trading without any prior experience. In other words, programming chops are the main ingredient needed to get started. To get a general understanding of what challenges await you afterduring the creation of an algorithmic trading system, check out this Quora post . Building a trading system from the ground up will require some background knowledge, a trading platform, market data, and market access. While not a requirement, choosing a single trading platform that provides most of these resources will help you get up to speed fast. That being said, the skills you develop will be transferable to any programming language and almost any platform. Believe it or not, building automated trading strategies isnt predicated on being a market expert. Nonetheless, learning basic market mechanics will help you discover profitable trading strategies. Options, Futures, and Other Derivates by John C. Hull - Great first book for entering quantitative finance, and approaching it from the mathematics side. Quantitative Trading by Ernie Chan - Ernie Chan provides the best introductory book for quantitative trading and walks you through the process of creating trading algorithms in MATLAB and Excel. Algorithmic Trading of Futures via Machine Learning - A 5-page breakdown of applying a simple machine learning model to commonly used technical analysis indicators. Heres an aggregated reading list PDF with a full breakdown of books, videos, courses, and trading forums. The best way to learn is by doing, and in the case of automated trading that comes down to charting and coding. A good starting point is existing examples of trading systems and existing exhibits of technical analysis techniques. Moreover, a skilled computer scientist has the additional edge of being able to apply machine learning to algorithmic trading. Here are some of those resources: TradingView - A fantastic visual charting platform on its own, TradingView is a great playground for getting comfortable with technical analysis. It has the added benefit of allowing you to script trading strategies and browse other peoples trade ideas. Automated Trading Forum - Great online community for posting beginner questions and finding answers to common quant issues when just getting started. Quant forums are a great place to become immersed in strategies, tools, and techniques. YouTube Seminar on trading ideas with working code samples on Github . Machine Learning: More presentations on automated trading can be found at the Quantiacs Quant Club . Most people from a scientific background (whether thats computer science or engineering) have had exposure to Python or MATLAB, which happen to be popular languages for quantitative finance. Quantiacs has created an open source toolbox that provides backtesting and 15 years of historical market data for free. The best part is everything is built on both Python and MATLAB giving you the choice of what to develop your system with. Heres a sample trend-following trading strategy in MATLAB. This is all the code needed to run an automated trading system, showcasing both the power of MATLAB and the Quantiacs Toolbox. Quantiacs lets you trade 44 futures and all the stocks of the SampP 500. In addition, a variety of additional libraries such as TensorFlow are supported. (Disclaimer: I work at Quantiacs) Once youre ready to make money as a quant, you can join the latest Quantiacs automated trading contest, with a total of 2,250,000 in investments available: Can you compete with the best quants 29.1k Views middot View Upvotes middot Not for Reproduction This answer has been completely re-written Here are 6 main knowledge base for building algorithmic trading systems. You should be acquainted with all of them in order to build effective trading systems. Some of the terms used may be slightly technical, but you should be able to understand them by Googling. Note: (Most of) these do not apply if you want to do High-Frequency Trading 1. Market Theories You need to understand how the market works. More specifically, you should understand market inefficiencies, relationships between different assetsproducts and price behaviour. Trading ideas stem from market inefficiencies. You will need to know how to evaluate market inefficiencies that give you a trading edge versus those that doesnt. Designing effective robots entails understanding how automated trading systems work. Essentially, an algorithmic trading strategy consists of 3 core components: 1) Entries, 2) Exits and 3) Position sizing. Youll need to design these 3 components in relation to the market inefficiency you are capturing (and no, this is not a straightforward process). You dont need to know advanced math (although it will help if you aim to build more complex strategies). Good critical thinking skills and a decent grasp on statistics will take you very far. Design involves backtesting (testing for trading edge and robustness) and optimisation (maximising performance with minimal curve fitting). Youll need to know how to manage a portfolio of algorithmic trading strategies too. Strategies can be complementary or conflicting this may lead to unplanned increases in risk exposure or unwanted hedging. Capital allocation is important too do you split capital equally during regular intervals or reward the winners with more capital If you know what products you want to trade, find suitable trading platforms for these products. Then learn the programming language API of this platformbacktesters. If you starting out, I would recommend Quantopian (stocks only), Quantconnect (stocks and FX) or Metatrader 4 (FX and CFDs on equity indices, stocks and commodities). The programming languages used are Python, C and MQL4 respectively. 4. Data Management Garbage in garbage out. Inaccurate data leads to inaccurate test results. We need reasonably clean data for accurate testing. Cleaning data is a trade-off between cost and accuracy. If you want more accurate data, you need to spend more time (time money) cleaning it. Some issues that cause dirty data include missing data, duplicate data, wrong data (bad ticks). Other issues that leads to misleading data include dividends, stock splits and futures rollovers etc. 5. Risk Management There are 2 main types of risk: Market risk and Operational risk. Market risk involves risk related to your trading strategy. Does it consider worst case scenarios What if a black swan event like World War 3 happens Have you hedged away unwanted risk Is your position sizing too high In addition to managing market risk, you need to look at operational risk. System crash, loss of internet connect, poor execution algorithm (leading to poorly executed prices, or missed trades due to inability to handle requoteshigh slippage) and theft by hackers are very real issues. 6. Live Execution Backtesting and live trading are very different. Youll need to select proper brokers (MM vs STP vs ECN). Forex Market News with Forex Trading Forums amp Forex Brokers Reviews is your best friend, read broker reviews there. You need proper infrastructure (secure VPN and downtime handling etc) and evaluation procedures (monitor your robots performance and analyse them in relation to market inefficiencybacktestsoptimisations) to manage your robot throughout its lifetime. You need to know when to intervene (modifyupdateshutdownturn on your robots) and when not to. Evaluation and Optimization of Trading Strategies Pardo (Great insights on methods on building and testing trading strategies) Trade your way to Financial Freedom Van K Tharp (Ridiculous-Click bait title aside, this book is a great overview to mechanical trading systems) Quantitative Trading Ernest Chan (Great introduction to algo trading on a retail level.) Trading and Exchanges: Market Microstructure for Practitioners Larry Harris (Market microstructure is the science of how exchanges function and what actually happens when a trade is placed. It is important to know this information even though you are just starting out) Algorithmic Trading amp DMA Barry Johnson (Shed light on banks execution algorithms. This is not directly applicable your algo trading but it is good to know) The Quants Scott Patterson (War stories of some top quants. Good as a bedtime read) Quantopian (Code, research, and discuss ideas with the community. Uses Python) Fundamentals of Algo Trading AlgoTrading101 (Disclaimer: I own this sitecourse. Learn robot design theories, market theories and coding. Uses MQL4) - Join the challenge (Learn trading concepts and backtesting theories. They recently developed their own backtesting and trading platform so this part is still new to me. But their knowledge base on trading concepts are good.) Recommended BlogsForums (these includes finance, trading and algo trading forums): Recommended Programming Languages: If you know what products you want to trade, find suitable trading platforms for these products. Then learn the programming language API of this platformbacktesters. If you starting out, I would recommend Quantopian (stocks only), Quantconnect (stocks and FX) or Metatrader 4 (FX and CFDs on equity indices, stocks and commodities). The programming languages used are Python, C and MQL4 respectively. 17.1k Views middot View Upvotes middot Not for Reproduction If investment is a process, then the logical conclusion is automation. Algorithms are nothing else than the extreme formalisation of an underlying philosophy. This is the visual expression of a trading edge Trading edge Win Avg Win - Loss Avg Loss It changed my life and the way I approach the markets. Visualise your distribution, always. It will help You clarify your concepts, shed light on your logical flaws, but first let039s start with philosophy and belief elicitation 1. Why is it important to clarify your beliefs We trade our beliefs. More importantly, we trade our subconscious beliefs. quotIf You don039t know who you are, markets are an expensive place to find outquot, Adam Smith Many people do not take the time to elicit their beliefs and operate on borrowed beliefs. Unanswered questions and faulty logic is the reason why some systematic traders tweak their system around each drawdown. i used to be like that for many years. Belief elicitation exercises: The Work by Byron Katie. After i completed a 2 beliefs a day challenge for 100 days, i could explain my style to any grandmother 5 why. Ask yourself a question with why and dive deeper. Mindsets: expansive and subtractive or smoothie Vs band-aid There are two types of mindset, and we need both at different times: Expansive to explore concepts, ideas, tricks etc Subtractive: to simplify and clarify concepts Systematic traders who fail at being subtractive have a smoothie approach. They throw all kinds of stuff into their strategy and then blend it with an optimizer. Bad move: complexity is a form of laziness Overly subtractive systematic traders have a band aid mentality. They hard-code everything and then good luck patching quotEssentialist tradersquot understand that it is a dance between periods of exploration and times of hard core simplification. Simple is not easy It has taken me 3,873 hours, and i accept it may take a lifetime2. Exit: start with the end in mind Counter-intuitive truth The only time when you know if a trade was profitable is after exit, right So, focus on the exit logic first. In my opinion, the main reason why people fail to automate their strategy is that they focus too much on entry and not enough on exit. The quality of your exits shapes your PampL distribution, see chart above Spend enormous time on stop loss as it affects 4 components of your trading system: Win, Loss, Avg Loss, trading frequency The quality of your system will be determined by the quality of your stop loss, 3. Money is made in the money management module Equal weight is a form of laziness. The size of your bets will determine the shape of your returns. Understand when your strategy does not work and reduce size. Conversely, increase size when it works. I will write more about position sizing on my website, but there are many resources across the internet 3. Last and very least, Entry After you have watched a full season of quotdesperate housewivesquot or quotbreaking badquot, had some chocolate, walked the dog, fed the fish, called your mom, then it039s time to think about entry. Read the above formula, stock picking is not a primary component. One may argue that proper stock picking may increase win. Maybe, but it is worthless if there is neither proper exit policy, nor money management. In probabilistic terms, after you have fixed exit, entry becomes a sliding scale probability 4. What to focus on when testing There is no magical moving average, indicator value. When testing your system, focus on three things: False positives: they erode performance. Find simple (elegant) ways to reduce them, work on the logic periods when the strategy does not work: no strategy works all the time. Be prepared for that and prepare contingency plans in advance. Tweaking the system during a drawdown is like learning to swim in a storm Buying power and money management: this is another counter-intuitive fact. Your system may generate ideas but you do not have the buying power to execute. Please, have a look at the chart above I build all my strategies from the short side first. The best test of robustness for a strategy is the short side: Thin volume brutally volatile shorter cycle Platforms I started out on WealthLab developer. It has a spectacular position sizing library. This is the only platform that allows portfolio wide backtetsing and optimisation. I test all my concepts on WLD. Highly recommend. It has one drawback, it does not connect position sizer with real live trading. Amibroker is good too. It has an API that connects to Interactive brokers and a decent poisition sizer. We program on Metatrader for Forex. Unfortunately, Metatrader has gone down the complexity rabbit hole. there is a vibrant community out there. MatLab, the weapon of choice for engineers. No comment. Tradestation Perry Kaufman wrote some good books about TS. There is a vibrant community out there. It is easier than most other platforms Final advice If You want to learn to swim, You have to jump in the water. Many novices want to send their billion dollar ideas to some cheap programmers somewhere. It does not work like that. You need to learn the language, the logic. Brace for a long journey 14.8k Views middot View Upvotes middot Not for Reproduction Though this is a very broad topic with references to building algorithms, setting infrastructure, asset allocation and risk management but i will just focus on the first part of how should be work on building our own algorithm, and doing the right things. 1. Building Strategy . Some of the key points to note here are: Catch Big Trends - A good strategy must in all the cases, make money when the market is trending. Markets go with a good trend which lasts only 15-20 of the time, but this is the time when all the cats and dogs(traders from all time-frame, intraday, daily, weekly, long term) are out shopping and they all have one common theme. A lot of traders also build mean reversion strategies in which they try to judge conditions when the price have moved far from the mean, and take a trade against the trend but they should be built when you have successfully build and traded some good trend following systems. Odds of stacking up - People often work towards trying to build a system which has a excellent winloss ratio but that039s not the right approach. For example an algo with a winner of 70 with a average profit of 100 per trade and average loss of 200 per trade will just make 100 per 10 trades(10trade net). But an algo with a winner of 30 with average profit of 500 per trade and loss of 100 per trade will make a net profit of 800 for 10 trades(80trade). So it is not necessary that winloss ratio should be good, rather it039s the odds of stacking up which should be better. This goes by saying quotKeep losses small, but let your winners runquot. quotIn investing, what is comfortable is rarely profitable. quot - Robert Arnott Drawdown - Drawdown is unavoidable, if you are following any type of strategy. So while designing an algo don039t try to reduce the drawdown or do some specific custom condition to take care of that drawdown. This specific condition can in future may act as a roadblock in catching a big trend and your algo may perform poorly. Risk Management - When constructing a strategy, you should always have an exit gate, whatever the market chooses to do. The market is a place of odds and you must design an algo to get you out of a trade as soon as possible if it doesn039t fit your risk appetite. Normally it is argued that you must risk 1-2 of capital in each trade, and is optimal in a lot of ways as even if you get arnd 10 false trades in succession your capital will go down by only 20.But this is not the case in actual market scenario. Some lossing trades will be between 0-1, while some may go to 3-4, so it is better to define average lossing capital per trade and the max capital you can loose in a trade, as markets are completely random and can039t be judged. quotEvery once in a while, the market does something so stupid it takes your breath away. quot - Jim Cramer 2. Testing and optimizing a Strategy Slippage . When we are testing a strategy on historical data, we are under the assumption that the order will be executed at the predefined price arrived by the algo. But this will never be the case, as we have to deal with market makers and HFT algo039s now. Your order in today039s world will never be executed on the desired price, and there will be slippage. This must be included in the testing. Market Impact : Volume traded by the algo is another major factor to be considered while doing back-testing and collecting historical results. As volume increases the orders placed by algo will have considerable market impact and the average price of filled order will be much different. Your algo may produce complete different results in actual market conditions, if you will not study the volume dynamics your algo has. Optimization : Most traders suggest you not to do curve fitting and over optimization and they are correct as the markets are a function of random variables and no two situation will ever be the same. So optimizing parameters for particular situations is a bad idea. I would suggest you to go for Zonal Optimization . It is a technique which i follow, buy identifying zones which have similar characteristics in terms of volatility and volume. Optimize these areas seperately, rather than optimizing for the whole period. The above are some of the most basic and most important steps that i follow, when converting a basic thought into an algorithm and checking it039s validity. quot Everyone has the brainpower to follow the stock market. If you made it through fifth-grade math, you can do it. quotPeter Lynch 17.3k Views middot View Upvotes middot Not for Reproduction Short answer: Learn mathematics applied to trading, the structure of markets and optionally be a top networkdistributed systems programmer. There are three potentially parallel tracks that can be taken to learn algorithmic trading from scratch depending on the ultimate purpose of why you wish to learn it. Here they are in increasing order of difficulty which also correlates to how much it becomes your part of your livelihood. The earlier ones will open the opportunities for the following ones. You may stop at any step along the way once you039ve learned enough or got a job doing it. If you want to be a quant, mostly use math software and not actually be a programmer of an algo system, then the short answer is get a PhD in Mathematics, Physics or some math-heavy related engineering topic. Try to get internships at top hedge funds, prop shops or investment banks. If you can get employed by a successful firm then you will be taught there otherwise, it simply won039t happen. But in any case, you still should finish the 039Self Study039 section below to make sure you really want to go through the effort of getting a PhD. Unless you are a genius, if you don039t have a PhD you won039t be able to compete with those that do unless you specialize in the programming of trading systems. If you wish to be more on the programming side, try applying for employment after each step, but no often than once a year per firm. Self Study The first step is to understand what algorithmic trading really is and what systems are required to support it. I039d recommend reading through quotAlgorithmic Trading amp DMAquot (Johnson, 2010), something I personally did and can recommend. That will let you understand at a basic level. Next you should program your own order book, a simple market data simulator and one algorithm implementation on your on with Java or CC. For extra credit that would help with getting employment you should write your own networking communication layer from scratch too. At this point you may be able finish answering the question on your own. But for completeness and curiosity, feel free to continue: The next book to tackle is quotTrading amp Exchanges: Market Microstructure for Practitionersquot (Harris, 2003). This will go into finer details of how the markets work. It is another book I039ve read, but not completely studied because I was a systems programmer and not a quant nor a manager on the business side. Finally, if you want to start to learn the mathematics on how the markets work, work through the text and problems in quotOptions, Futures, and Other Derivativesquot (Hull, 2003). I made it through about half of that textbook either in preparation for or as part of internal training at one of my former employers. I believe I originally found out about that book because it was either suggested or required reading for one of well regarded MS Financial Mathematics programs. To potentially get a better chance at employment through a new-grad feeder program, complete a MS Financial Mathematics program if you wish to be a programmer for a trading platform or a team of quants. If you want to be the one designing the algos, then you need to take the PhD route explained earlier. If you still haven039t finished college, then by all means, try to get an internship at the same type of places. Employment No matter how much you learn in books and school, nothing will compare with the little details you learn while working for a firm. If you don039t know all the edge cases and know when your model stops working, you will lose money. I hope that answers your question and that along the way of learning you discover if you really wish to transition from study to actual day-to-day work. 18.6k Views middot View Upvotes middot Not for Reproduction I do have a background as a programmer and setting up agilescrum teams before I started to look at algorithmic trading. The world of algorithmic trading fascinates me, however it can be a bit overwhelming. I started to get some perspective by diving into the Quantopian platform, watching the quant lectures series and running my and adapted community based algo trading systems in their environment. Like the one below: I then realised to get in deeper more fast, I have to meet people that love to create trading strategies, but can not program - to match myself as an agile team manager and programmer of trading systems. So I wrote a book on how to create a team to implement your trading algorithms . Building Trading Systems The Agile Way: How to Build Winning Algorithmic Trading Systems as a Team. In the community of Quantopian I saw financial savvy people looking for people to implement their trading strategies, but where afraid to ask programmers to implement their ideas. Since they potentially can start running their trading ideas without them. I address this issue in my book. To avoid programmers to run away with your ideas: create a specification for your trading idea that uses a coding framework that is tailored for the type of strategy you want to develop . This might sound difficult, but when you know all the baby steps and how they fit together, it is pretty straightforward and fun to manage If you enjoyed this answer, please up vote and follow. 2.7k Views middot View Upvotes middot Not for Reproduction Look at TradeLink (C) or ActiveQuant (Java). TradeLink039s code is more elegant. I039m typing this on a cell phone, so please excuse my brevity. basically, look at what comes in vs what goes out as an initial way to frame the problem. In. market data, exhangemarket events (executions to trades that your system placed, acks, rejects, trading-halted notification, etc). Out. Orders, modifications to ordes. quotBuy 100 15.5, IOCquot, for example. IOC immediate or cancel. In between. strategy decisions based on information gathered from real-time data, in conjunction with historical data and any other inputs (trader039s command from his GUI to trade moreless aggressively, etc). Things like. place an order, amend an existing order, etc Now you can begin to address the technical architecture of such a system. Of key importance would be the ability to express the strategy easily, elegantly, despite the complexity of event-processing involved (there are several interesting race conditions that can confuse your system with regards to the state of the market your orders, for example). I used to do this for a living and can probably go on endlessly But typing on a cell phone is a deterrent. Hope you found this useful. Contact me if you need further guidance. 21.3k Views middot View Upvotes middot Not for Reproduction Stephen Steinberg. Founder of Raw Athletics Founder of Capitol Startup Interactive Brokers Interactive Brokers has a really top-notch investing platform and decent pricing. It039s definitely a powerful tool, so you could probably get cheaper alternatives from the discount brokers like Etrade and Scottrade, but if you039re serious about algorithmic trading, IB is where it039s at. InvestFly Success is all about practice and testing your hypothesis and algorithms. Back-test, test the markets and compare it to others. I prefer Investfly - Virtual Stock Exchange, Stock Market Game amp Trading Strategies. but there are a ton of good programs out there. Idea Generation Don039t start from ground zero-- I like to get ideas from Motif Investing ( Online Brokerage, Investment Ideas, Stock Trading ) and Seeking Alpha, but always look at the big picture and think about how these things apply to your own hypothesis and formulas. Cheers and good luck 4.5k Views middot View Upvotes middot Not for Reproduction Updated 101w ago middot Upvoted by Patrick J Rooney. 5 years trading professionally I specialize in advanced o To start with the basics, get a hold of Amibroker ( AmiBroker - Download ). Amibroker has an easy to learn language and powerful backtest engine where you can prototype your ideas. Also get Howard Bandy 039s book Quantitative Trading Systems. This book is a really good introduction to the concepts of quant developing. Du musst auch mindestens ein Grundkenntnis der Statistik haben. There are plenty of good MOOC courses available for this for free. Such as this one Statistics One - Princeton University Coursera It039s also worth following The Whole Street. which is a mashup of all the quant blogs, many of whom publish Amibroker code with their ideas. From there, it039s then worth learning Python ( learn python - Google Search ), and also doing Andrew Ng039s excellent Stanford University Machine Learning course, which runs for free on Coursera . If you then want to put your own algorithms to the test, good sites for that are Quantconnect or Quantopian . Finally, this guy has some good advice on turning it into your career quantstart Good luck with the journey Partially taken from Alan Clement039s answer to How can a software developer in finance become a quant developer 16.3k Views middot View Upvotes middot Not for Reproduction What broker can I use to start paper trading my algorithm for free How can I build an Order Routing System for an algorithmic trading platform How profitable are the best stock trading algorithms Can a single person actually profitably engage in algorithmic trading Where can I get resources to start learning Python for Algorithmic trading Which broker is good for algorithmic trading I have a solid understanding of stocksderivatives amp have Python skills. I want to develop an automated algorithmic trading system. Where do I start What are the best returns from algorithm tradingHow to Build Your Own Algorithmic Trading Strategy How to Build Your Own Algorithmic Trading Strategy Algorithmic Trading Strategy Every week we receive numerous emails asking us how we created our profitable algorithmic trading strategy . Instead of trying to explain our process and reasoning repeatedly through emails and phone calls, we decided to create a detailed video about the 4 major hurdles traders get stuck on, and how you can build your own profitable algorithmic trading strategy . Your goal as a trader is create or at least use a winning trading strategy. It does not matter if you manually trade it, or if its an automated trading strategy . But if you do happen to create something that makes money, its only natural that you then focus on automating it so you have your own algorithmic trading strategy running and working for you, while you build your next algo trading strategy 8230 Over the years I spent 108217s of thousands of dollars trying to figure out what the keys are to successful trading strategy. I want to share with you how I build profitable algorithmic trading strategies that work in rising, falling, and sideways markets. How I Built A Profitable Algorithmic Trading Strategy amp How You Can Also Let me share with you my journey as a trader in the order things happen to me and how I became a full-time algorithmic trading strategy user. Watch the video below for details and the special offer. Algorithmic Trading Strategy Reaches New High-Water Mark of 30.7 ROI 8211 Press Release Share this entry Copyright 2017 - ALGOTRADES - Automated Algorithmic Trading System CFTC RULE 4.41 - HYPOTHETICAL OR SIMULATED PERFORMANCE RESULTS HAVE CERTAIN LIMITATIONS. UNTERNEHMEN EINE TATSÄCHLICHE LEISTUNGSAUFNAHME, ERFOLGREICHE ERGEBNISSE NICHT VERTRETEN TATSÄCHLICHES HANDEL. AUCH AUCH DIE HÄNDLER HABEN NICHT AUSGEFÜHRT WERDEN, DIE ERGEBNISSE KÖNNEN UNTER - ODER ODER ÜBERGANGSERKLÄRUNG FÜR DEN AUSWIRKUNGEN, WENN JEDOCH, BESTIMMTE MARKTFAKTOREN, WIE LICHT DER LIQUIDITÄT. SIMULIERTE HANDELSPROGRAMME IN ALLGEMEINEN SIND AUCH AUF DIE TATSACHE, DIE SIE MIT DEM BENEFIT VON HINDSIGHT ENTWICKELT WERDEN. KEINE REPRÄSENTATION IST GEMACHT, DASS JEDES KONTO WIRD ODER IST, WIE GEWINNEN ODER VERLUSTE ÄNDERN ZU DIESEM ANGEBOT ZU ERHÖHEN. Es wird keine Vertretung gemacht, noch bedeutet, dass die Verwendung des algorithmischen Handelssystems Einkommen generieren oder einen Gewinn garantieren wird. Es besteht ein erhebliches Verlustrisiko im Zusammenhang mit Futures-Handels - und Handelsbörsen. Futures-Handels - und Handelsbörsen handelnde Fonds beinhalten ein erhebliches Verlustrisiko und sind für alle nicht geeignet. Diese Ergebnisse basieren auf simulierten oder hypothetischen Leistungsergebnissen, die gewisse inhärente Einschränkungen aufweisen. Anders als die Ergebnisse, die in einem tatsächlichen Leistungsrekord gezeigt werden, stellen diese Ergebnisse nicht den tatsächlichen Handel dar. Auch weil diese Geschäfte nicht tatsächlich ausgeführt wurden, können diese Ergebnisse die Auswirkungen von bestimmten Marktfaktoren, wie zB Liquiditätsverlust, unter - oder überkompensiert haben. Simulierte oder hypothetische Handelsprogramme im Allgemeinen unterliegen auch der Tatsache, dass sie mit dem Vorteil der Nachsicht entworfen sind. Es wird keine Vertretung gemacht, dass ein Konto eine Gewinne oder Verluste erzielen wird, die diesen ähnlich sind. Informationen auf dieser Website wurden ohne Rücksicht auf bestimmte Investoren Investitionsziele, finanzielle Situation und Bedürfnisse vorbereitet und weiter beraten Abonnenten nicht auf Informationen zu handeln, ohne spezifische Beratung von ihren Finanzberater nicht auf Informationen von der Website als primäre Basis zu verlassen Für ihre Anlageentscheidungen und ihr eigenes Risikoprofil, Risikotoleranz und eigene Stopverluste zu berücksichtigen. - powered by Enfold WordPress Theme Chris Vermeulen on Benzinga PreMarket TV Show 8211 Automated Trading. Algorithmic Trading Strategies Performance 038 Investor Education
Masih ingat sosok gadis berwajah ayu nan lugu yang di dunia maya dikenal dengan nama Chika Foto terbaru mirip chika kembali muncul meramaikan jagad internet, tapi kali ini tampilannya tak seperti dulu yang 8216polos8217. Sosok Chika seolah menjadi legende bagi netizen khususnya kaum adam penikmat foto-foto syur. Bagaimana tidak, sekira tahun tahun 2005 silam ketika jagad maya belum seramai sekarang, foto-foto Chika sudah bertebaran menghiasi halaman beragam situs. Kala itu foto-foto Chika berhasil mencuri perhatian netizen lantaran gadis itu memiliki paras yang cantik, kulit mulus, dengan tubuh yang sedikit semok. Tak heran jika para lelaki menjadikan foto Chika sebagai subjek imajinasi menjelang tidur atau mungkin sedang menyepi di kamar mandi. Kini masih banyak yang penasaran dan berusaha mencari tahu sosok Chika yang sebenarnya. Terutama mencari foto terbaru dan sedang apa Chika sekarang. Hal Yang Sama Pun Kami Lakukan. Alhasil kami menemukan dua lembar foto yang mirip wajah Chika. ...
Comments
Post a Comment